
International Journal of Advanced Research
in Education Technology (IJARET)

49

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

Survey on Bloom-Filter Based Forwarding and Denial
of Service Attack

IRoopa Patrimath, IINirmala Y Bariker
IM.Tech Student, IIAssistant Professor

I,IIDept.of CSE, Mangalore Institute of Technology and Engg., Mangalore, Karnataka, India

I. Intoduction
In standard IP routing-table lookup[9], when user want to forward
the data to any multicast groups or unicast the construction of
routing table at each node is necessary and each node has to
store the per flow, state information at every node. So it requires
larger storage and the computation at each node which leads to
the burden on the nodes. But it’s a traditional approach which has
been used in the network.
When user wants to process packets across the network without
storing any state or per flow information at each node, the attractive
approach has been proposed that’s called Bloom-Filter based
Forwarding. In-packet Bloom-filter-based forwarding is relatively
simple The delivery tree is stored in the packet header as a set of
forwarding-hop identifiers (FHIDs), which can be either nodes,
links, or in–out interface pairs on the delivery tree.
The set of FHIDs in the delivery tree is encoded as a Bloom
filter [10] data structure, which enables efficient testing of set
membership. Network nodes forward packets by checking which
potential FHIDs, e.g., in-out interface pair, nodes and links are
in the Bloom filter. Bloom-Filter can provide better Scalability
compare to the standard IP routing because in this it doesn’t store
any state or per flow information.
While forwarding the data in the network there is a possibility
of denial of service attack, which may leads to the false positive
results and that causes the data forwarding to choose different
path which has not encoded in the filter by the forwarder. And it
causes the data to loop in the network itself. And finally it causes
the denial of service attack.
So in order to overcome the Dos Attack there are 3 security
approaches has been used in the existing bloom-filter structure.
1) Limiting the number of items stored in the Bloom filters.
2) Centralizing Bloom filter computation and making

forwarding-hop identifiers secret.
3) Cryptographically computed per-flow forwarding-hop

identifiers.

Perhaps surprisingly nobody until today has thoroughly evaluated
the security of these proposals. Bloom-filter-based forwarding
needs further improvements on security before deploying on
open networks. The security mechanisms Proposed in the existing
system do increase the cost of DoS attacks

II. Bloom-Filter
Bloom-Filter is probabilistic data structure for storing sets.
The main functions of the bloom-filter are element addition,
membership testing but not the element removal. Data elements
are set in the filter and filter is implemented as a bit array with fixed
length of m and small k hash function is used on the data set and the
corresponding k bits in the bit array are set to 1. And membership
testing is also done by checking whether the corresponding k bits
in bit array. If requested bits are set then it will give true result if
not some time it will lead to false positive results.
Bloom-filter is said to be probabilistic data structure because
some time it will lead to false positive results when performing
membership testing. The rate of false positive grows if the number
of n bits inside the filter is more.
So in order to avoid false positive results limit the number of bits
to be set inside the filter. Because of their space efficiency, Bloom
filters are typically used for storing large sets or when the memory
usage needs to be minimized. the filters have to fit into network
packet headers. Therefore, we consider unusually short filters of
256–1024 bits, which can store roughly 20–100 data items.
Three methods have been proposed for Bloom-filter-based
Multicast forwarding:
1) Using Bloom filters in the multicast routers to reduce the

space required for storing the multicast forwarding table
[9].

2) Source routing where the multicast delivery-tree is encoded
as a Bloom filter in the packet headers.

3) Storing the list of receivers in the packet header as a Bloom
filter [11,12].

Where in the first approach each outgoing interface of a multicast
router has a Bloom-Filter, it encodes the multicast-group addresses
which are reachable through that interface.
False positives are acceptable because they only cause the multicast
packets to be forwarded to some unnecessary paths.
Where in the second approach source tree or set of route through
which data has to be processed is encoded in-packet Bloom-Filter.
In this each out going link is assigned with m bit link identifiers
and k pseudo-randomly selected bits are set. But the drawback is
that function and inputs used to choose the bits vary in different
proposals

Abstract
This paper presents the Bloom-Filter Based Forwarding. Bloom-Filter is a probabilistic data structure for storing sets. That resolves
the current problems in the network such as routing table growth and multicast scalability and Denial of Service attack. there are
several protocol has been proposed such as source routing and delivery tree encoded in a packet header, based on the information
stored in the packet header as a filter, nodes will forward the packet. But it has a several problems like path selection and security
issues. So in order to overcome that path selection algorithm has been used and for security purpose Encryption techniques has
been proposed.

Keywords
Bloom-Filter, DoS, Multicast, Network security.

International Journal of Advanced Research
in Eduation Technology (IJARET)

50

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

Where in the third approach the set of receiver through which
data has to be processed is set inside the filter and every node will
open the filter and it will check whether it has a any other node to
forward. Based on the information stored in the filter forwarding
decision will be done. But main drawback in this is security and
possibility of denial of service attack and it will also give the
false positive results.

Flood-
ed

Sub-
tree

False
Positive

Fig.1: Forwarding Loop

Fig. 2: Repeated flow duplication.

III. Related Work
Literature survey is mainly carried out in order to analyze the
background of the current project which helps to find out flaws
in the existing system & guides on which unsolved problems
we can work out. So, the following topics not only illustrate the
background of the project but also uncover the problems and flaws
which motivated to propose solutions and work on this project.
A variety of research has been done on power aware scheduling.
Following section explores different references that discuss about
several topics related to power aware scheduling
Revisiting IP Multicast: This paper revisits a much explored topic
in networking – the search for a simple yet fully-general multicast
design Many years of research into multicast routing have led
to a generally pessimistic view that the complexity of multicast
routing – and inter-domain multicast routing in particular – can
only be overcome by restricting the service model (as in single-
source) multicast [1]. This paper proposes a new approach to
implementing IP multicast that will leads to a re-evaluation of
this commonly held view [1].
Self-Routing Denial-of-Service Resistant Capabilities Using In-
packet Bloom Filters: In this paper, it proposes and analyses an
in-packet Bloom-filter-based source-routing architecture which is
resistant to Distributed Denial-of-Service attacks. This approach
is based on forwarding identifiers that act simultaneously as path
designators, i.e. define which path the packet should take, and
as capabilities, i.e. effectively allowing the forwarding nodes
along the path to enforce a security policy where only explicitly
authorized packets are forwarded. The compact representation is
based on a small Bloom filter whose candidate elements (i.e. link

names) are dynamically computed at packet forwarding time using
a loosely synchronized time-based shared secret and additional
in-packet flow information (e.g., invariant packet contents). The
capabilities are thus exploitable and flow-dependent, but do not
require any per-flow network state or memory look-ups, preliminary
security analysis suggests that the self-routing capabilities can
be an effective building block towards DDoS-resistant network
architectures [2].
Forwarding anomalies in Bloom filter based multicast: Several
recently proposed multicast protocols use in-packet Bloom filters
to encode multicast trees. These mechanisms are highly scalable
because no per-flow state is required in the routers and because
routing decisions can be made efficiently by simply checking for
the presence of outbound links in the filter. Yet, the viability of
previous approaches is limited by the possibility of forwarding
anomalies caused by false positives inherent in Bloom filters. This
paper explores such anomalies, namely (1) packets storms, (2)
forwarding loops and (3) flow duplication. This paper proposes
stateless solution that increases the robustness and the scalability
of Bloom filter-based multicast protocols. In particular, it shows
that the parameters of the filter need to be varied to guarantee
the stability of the packet forwarding, and which presents a bit
permutation technique that effectively prevents both accidental
and maliciously created anomalies. The solution to avoid such
anomalies, the context of Bloom-Cast is proposed, which is a
source-specific inter-domain multicast protocol, which uses
analytical methods and simulations [3].
In-packet Bloom filter based data center networking with
distributed Open Flow controllers: This paper discusses a novel
data center architecture based on load-balanced forwarding with
in-packet Bloom filters enabled by two support services that
distribute the directory and topology state of Open Flow controller
applications. By deploying an army of Rack Managers acting
as Open Flow controllers, the proposed architecture promises
scalability, performance and fault-tolerance. We conjecture that
packet forwarding itself may become a cloud internal service
implemented by leveraging cloud application best practices such
as low-latency, highly-available, key-value storage systems.
Moreover, we contribute to demystifying the argument that the
centralized controller model of Open Flow networks is prone to
a single point of failure and show that direct network controllers
can be physically distributed; yielding a “sweet spot” between
fully distributed and centralized networking paradigms [4].
Data center networking with in-packet Bloom filters: This
paper describes a networking approach for cloud data center
architectures based on a novel use of in-packet Bloom filters
to encode randomized network paths. In order to meet the
scalability, performance, cost and control goals of cloud
infrastructures, innovation is called for at many areas of the data
center environment, including the underlying switching topology
and the packet forwarding paradigms. Motivated by the advent
of high-radix, low-cost, commodity switches coupled with a
substrate of programmability, our proposal contributes to the
body of work re-thinking how to interconnect racks of commodity
PCs at large. In this work, we present the design principles and
the Open Flow based test-bed implementation of a data center
architecture governed by Rack Managers, which are responsible
to transparently provide the networking and support functions to
cost-efficiently operate the DC network. We evaluate the proposal
in terms of state requirements, our claims of false-positive-free
forwarding, and the load balancing capabilities [5].

International Journal of Advanced Research
in Education Technology (IJARET)

51

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

Implementing zFilter based forwarding node on a NetFPGA:
In this paper, it describes about the NetFPGA based forwarding
node implementation for this new, IP-less, forwarding fabric. The
implementation requires removing the traditional IP forwarding
implementation, and replacing it with the Bloom-filter matching
techniques for making the forwarding decisions. To complete the
work, we provide measurement results to verify the forwarding
efficiency of the proposed forwarding system and we compare
these results to the measurements from the original, IP-based
forwarding implementation [6].
Secure in-packet Bloom Filter forwarding on the NetFPGA: In-
packet Bloom-Filter allows one to forward source-routed packets
with minimal forwarding tables; the Bloom-Filter is encoded with
the identities of the links through which the packet needs to be
forwarded. If the link identities are made content dependent, e.g.
by computing the next-hop candidate link identifiers by applying
a cryptographic function over some information carried in the
packet header, the Bloom filters differ pseudo-randomly from
packet-to-packet, making the forwarding fabric resistant towards
unauthorized traffic. In this paper, it describes about the early
implementation and testing of an in-packet Bloom filters forwarding
node that implements cryptographically computed link identifiers.
We have tested two different cryptographic techniques for the
link-identity computation and thereby for making the forwarding
decision. The algorithms have been implemented and tested on
the Stanford NetFPGA. The performance and efficiency of the
algorithms is also briefly discussed [7].

IV. Proposed System
Where in the existing system there was a no exact path selection
technique which has been used. In the previous work they used
cryptographically computed paths. But in this technique every time
computation has been done at each node and filter will be keep
changing every time. So it’s difficult to compute filter every time.
In another method user will encode the set of link identifiers as
a forwarding paths by performing Logical OR operations. When
filter reaches at each node it will perform logical AND operation
to check the filter content.
So in this paper am using a shortest path algorithm to compute
the filter for data forwarding. By using this technique when user
wants to forward the data to intended destination. First it will
create the filter of shortest paths and along with that filter message
will be transmitted.
In the proposed method the percentage of DoS attack will be
reduced by using Encryption technique.

DIJKSTRA’S ALGORITHM: This resolves the single-source
shortest-path problem when all edges have non-negative weights.
It is a greedy algorithm and similar to Prim's algorithm. Algorithm
starts at the source vertex, s, it grows a tree, T, that ultimately
spans all vertices reachable from S. Vertices are added to T in
order of distance i.e., first S, then the vertex closest to S, then the
next closest, and so on. Following implementation assumes that
graph G is represented by adjacency lists.

DIJKSTRA’s (G, w, s)
1. INITIALIZE SINGLE-SOURCE (G, s)
2. S ← { } // S will ultimately contains vertices of final shortest-
path weights from s
3. Initialize priority queue Q i.e., Q ← V [G]
4. While priority queue Q is not empty do

5. u ←EXTRACT_MIN(Q) // Pull out new vertex
6. S ←S U {u} // Perform relaxation for each vertex v adjacent
to u
7. For each vertex v in Adj[u] do
8. Relax (u, v, w)

Data Flow Diagram of proposed system:
A data-flow diagram (DFD) is a graphical representation of the
"flow" of data through an information system. DFDs can also be
used for the visualization of data processing (structured design).
On a DFD, data items flow from an external data source or an
internal data store to an internal data store or an external data sink,
via an internal process.

Sender side: At this stage first sender will specify the name of
the sender and receiver through which data has to be processed.
So first sender will compute the shortest path and that path will be
hashed in terms of 0’s and 1’s that is termed as Bloom-Filter. Then
the Bloom-Filter and User data or message is encrypted together
and it’s forwarded in the network as shown in the figure 3.

Receiver side: At this stage receiver will capture the encrypted
packet from the network. And receiver will decrypt that packet to
identify which is the next path in the filter. In this receiver can be
a intermediate node. If there is a path to forward data then again
message and filter will be encrypted and then it is forwarded.
or else if current node itself is a receiver then the packet will be
processed there itself as shown in the figure 4.

Fig. 3: Sender Side

Fig. 4: Receiver Side

International Journal of Advanced Research
in Eduation Technology (IJARET)

52

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

V. Conclusion
In this paper, discussion is made on what is Bloom-filter and how
the filter will be constructed and which are the possible methods
for constructing the bloom-filter and how the Denial of Service
attack can be avoided. In the section of related work it will give
the brief explanation regarding previous work on Bloom-Filter
based Forwarding and DoS attack. In the Proposed system section
it will give the brief explanation about algorithm which has been
used and how it will protect from denial of service attack.

VI. Acknowledgment
I am very thankful to my guide Ms. Nirmala Y Bariker Assistant
Professor, Department of Computer Science and Engineering,
Mite for her cordial support, valuable information and guidance,
to prepare this paper and also thankful to Prof. Dr. Nagesh H R,
Head of the Department, Computer Science and Engineering, for
his valuable and constructive suggestions during the planning and
development of this work.

References
[1] S. Ratnasamy, A. Ermolinskiy, and S. Shenker, “Revisiting

IP multicast,” Comput. Commun. Rev., vol. 36, no. 4, pp.
15–26, 2006

[2] C. Rothenberg, P. Jokela, P. Nikander, M. Särelä, and J.
Ylitalo, “Self-routing denial-of-service resistant capabilities
using in-packet Bloom-Filters,” in Proc. Eur. Conf. Comput.
Netw. Defense,2009, pp. 46–51.

[3] M. Särelä, C. E. Rothenberg, T. Aura, A. Zahemszky, P.
Nikander, and J. Ott, “Forwarding anomalies in Bloom-
Filter based multicast,” in Proc.30th IEEE INFOCOM, 2011,
pp. 2399–2407.

[4] C. Macapuna, C. Rothenberg, and M. Magalh aes, “In-packet
Bloom-Filter based data center networking with distributed
OpenFlow controllers,” in Proc. IEEE GLOBECOM
Workshops, Dec. 2010, pp. 584–588.

[5] C. Rothenberg, C. Macapuna, F. Verdi, M. Magalhães, and A.
Zahemszky,“Data center networking with in-packet Bloom-
Filters,” in Proc.28th SBRC, Gramado, Brazil, 2010, pp.
553–566.

[6] J. Keinänen, P. Jokela, and K.“Implementing zFilter based
forwarding node on a NetFPGA”. in Proc. NetFPGA Dev.
Workshop, 2009, pp. 1–8.

[7] A. Ghani and P. Nikander, “Secure in-packet Bloom -Filter
forwarding on the NetFPGA”. in Proc. 1st Eur. NetFPGA
Dev. Workshop, 2010, pp. 1–7.

[8] M.Särelä, “BloomCasting for publish/subscribe networks,”
Ph.D. dissertation, Aalto Univ., Espoo, Finland 2011.

[9] B. Grönvall, “Scalable multicast forwarding,” Comput.
Commun. Rev.,vol. 32, pp. 68–68, January 2002.

[10] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM, vol. 13, pp. 422–426,
Jul. 1970.

[11] X. Tian, Y. Cheng, and B. Liu, “Design of a scalable multicast
scheme with an application-network cross-layer approach,”
IEEE Trans. Multimedia, vol. 11, no. 6, pp. 1160–1169, Oct.
2009.

[12] X. Tian, Y. Cheng, and X. Shen, “DOM: A scalable multicast
protocol for next-generation Internet,” IEEE Netw, vol. 24,
no. 4, pp. 45–51, Jul.–Aug. 2010.

Authors Profile

Roopa Patrimath completed the
Bachelor’s Degree in Computer Science
& Engineering from Visvesvaraya
technological University (VTU).
Currently pursuing M.Tech degree in
Computer Network Engineering at
Mangalore Institute of Technology,
Mangalore.

Nirmala Y Bariker completed bachelors
and masters degree in Computer
Science and Engineering. Currently
working as Assistant Professor in
Mangalore Institute of Technology,
Mangalore. She has published 4
research papers in National and
International conferences.

