
International Journal of Advanced Research
in Eduation & Technology (IJARET)

136

Vol. 2, Issue 3 (July - Sept. 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

Optimal Reduces Energy Consumed Framework Using
Distributed Resources Material Base Allocation

IN.Karthika, IID.Ponniselvi
IM.Phil Full-Time Research Scholar, IIM.Sc.,M.Phil., Assistant Professor

I,IIDept. of Computer Science and Applications, Vivekanandha College of Arts and Sciences
For Women (Autonomous), Elayampalayam, Tiruchengode, Tamil Nadu, India.

I. Objectives
To calculate cloud area status at a given refresh period.•	
To group cloud areas based on their processing ability.•	
To make nodes inside the cloud area not treated equally. •	
According to their processing and storage power, the partial
job is assigned to them.
To assign one job to multiple nodes after the job is split •	
according to the nodes capability.
To split the Jobs are into sub tasks and assign them to more •	
cloud nodes.
To take in to account both dependent tasks and Independent •	
task scheduling.
To consider job replication strategy.•	
To decrease completion time of jobs.•	

II. Problem Definition
It presents a workload characterization of nodes by dividing
tasks into task classes using the K-means algorithm. However,
different from existing methods whose main objective is to
understand	workload	characteristics,	 the	existing	system	finds	
accurate workload characterization, while supporting task
classification	(e.g.,	labeling)	at	runtime.	Note	that	machines	are	
naturally	characterized	(i.e.,	 there	are	10	types	of	machines	in	
the	cluster).	Thus,	the	existing	solution	will	mainly	focus	on	task	
characterization.
Once the workload characterization has been obtained, the existing
system introduces a monitoring mechanism that allows Harmony
to capture the runtime workload composition in terms of arrival
rate	for	each	task	class.	To	make	provisioning	decisions,	it	defines	
a container as a logical reservation of resources that is meant to
host tasks belonging to the same task class.
It designs a load prediction algorithm that can capture the future
resource usages of applications accurately. The algorithm can
capture the rising trend of resource usage patterns and help
reduce	the	placement	churn	significantly.	It	looks	inside	a	VM	
for application level statistics, e.g., by parsing logs of pending
requests.	Doing	so	requires	modification	of	the	VM	which	may	
not always be possible.
However, cloud is a heterogeneous system. Scheduling independent

tasks on it is more complicated. In order to utilize the power of
cloud	completely,	we	need	an	efficient	job	scheduling	algorithm	
to assign jobs to resources in a cloud data center.
The proposed system covers all the existing system approach.
In addition, among all the cloud nodes, Adaptive Scoring Job
Scheduling	algorithm	(ASJS)	is	applied	for	cloud	nodes	resource	
scheduling	so	that	the	given	job	is	split	into	‘N’	tasks	along	with	
Replication Strategy.
Adaptive	Scoring	Job	Scheduling	(ASJS)	aims	to	decrease	job’s	
completion time. It considers only the computing power of each
resource in the grid but also the transmission power of each
cluster	in	a	grid	system.	It	defines	the	computing	power	of	each	
resource, the product of CPU speed and available CPU percentage.
The	transmission	power	of	each	cluster	is	defined	as	the	average	
bandwidth between different clusters. It should use the status of
each resource in the cloud as parameters to initialize the cluster
score of all clusters.
Enhanced	Adaptive	Scoring	Job	Scheduling	algorithm	(EASJS)	
for	Job	splited	into	‘N’	tasks	along	with	Replication	Strategy.	In	
addition, jobs are divided into sub tasks and given to one or more
clusters. Storage capacity requirement is also included in Cluster
Score calculation.

III. Review of Literature

1. RELATED WORK

Effective Straggler Mitigation: Attack of The Clones
Authors:
Ganesh	Ananthanarayanan,	Ali	Ghodsi1,	 Scott	 Shenker,	 Ion	
Stoica
In	this	paper	[1]	describers	the	small	jobs,	that	are	typically	run	for	
interactive data analyses in data centers, continue to be plagued
by disproportionately long-running tasks called stragglers. In
the	production	clusters	at	Facebook	and	Microsoft	Bing,	even	
after applying state-of-the-art straggler mitigation techniques,
these latency sensitive jobs have stragglers that are on average
8 times slower than the median task in that job. Such stragglers
increase the average job duration by 47%. This is because current

Abstract
Data centers consume tremendous amounts of energy in terms of power distribution and cooling. Dynamic capacity provisioning is
a promising approach for reducing energy consumption by dynamically adjusting the number of active machines to match resource
demands. However, despite extensive studies of the problem, existing solutions have not fully considered the heterogeneity of both
workload and machine hardware found in production environments. To address this limitation, this project presents Harmony, a
Heterogeneity-Aware dynamic capacity provisioning scheme for cloud data centers. Specifically, it first uses the K-means clustering
algorithm to divide workload into distinct task classes with similar characteristics in terms of resource and performance requirements.
Then it presents a technique that dynamically adjusting the number of machines to minimize total energy consumption and scheduling
delay.

Keywords
Data center, load balancing, Harmony cloud data center, EASJSA, Energy Consumption

International Journal of Advanced Research
in Education & Technology (IJARET)

137

Vol. 2, Issue 3 (July - Sept. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

mitigation techniques all involve an element of waiting and
speculation. Instead of this propose full cloning of small jobs,
avoiding waiting and speculation altogether. Cloning of small
jobs only marginally increases utilization because workloads
show that while the majority of jobs are small, it consumes a
small fraction of the resources. The main challenge of cloning is,
however, that extra clones can cause contention for intermediate
data. Delay assignment technique is used in this approach, which
efficiently	avoids	such	contention.	Evaluation	of		system,	Dolly,	
using production workloads shows that the small jobs speedup
by 34% to 46% after state-of-the-art mitigation techniques have
been applied, using just 5% extra resources for cloning.

Managing Server Energy and Operational Costing Hosting
Centers
Authors:
Wubi Qin Yiyu Chen Wubi Qin
This	paper	has	presented	the	first	formalism	to	the	problem	of	
reducing server energy consumption at hosting centers running
multiple applications towards the goal of meeting performance
based SLAs to client requests. Though prior studies have shown
energy	savings	for	server	clusters	by	server	turn-offs	and	DVS,	
these savings come at a rather expensive cost in terms of violating
the	performance-based	SLAs	(which	are	extremely	important	to	
maintain	the	revenue	stream).	Further,	previous	proposals	have	not	
considered the cost of server turn-offs, not just in terms of time.

Analysis and Lessons from A Publicly Available Google
Cluster Trace
Authors:
Yanpei	Chen,	Archana	Ganapathi	 ,Rean	Griffith	 ,Randy	 	H.	
Katz
In this paper, publicly available traces are demonstrated in valuable
regardless of dataset size. Clearly, more data would allows to
generalize	finding	and	gain	additional	system	design	insights.	It	
hopes the Google public data release foreshadows a seachange in
attitudes towards making production traces publicly available. It
argues for a public production system trace repository similar to the
Computer Failure Data Repository. To facilitate such a repository
while addressing trade secret and user privacy concerns, future
work should develop a toolkit with anonymizers, data format
converters, and standard algorithms for detailed statistical analysis.
First step in this direction represented in this paper.

Dynamic Right-Sizing For Power-Proportional Data
Centers
Authors:
Minghong Lin and Adam Wierman Lachlan L. H. Andrew
Eno Thereska
This	paper	has	provided	a	new	online	algorithm,	LCP	(w),for	
dynamic right-sizing in data centers. The algorithm is motivated by
the	structure	of	the	optimal	offline	solution	and	guarantees	cost	no	
larger than 3 times the optimal cost, under very general settings –
arbitrary workloads, general delay cost models, and general energy
cost	models.	Further,	in	realistic	settings	the	cost	of	LCP(w)	is	
nearly	optimal.	Additionally,	LCP(w)	is	simple	to	implement	in	
practice	and	does	not	require	significant	computational	overhead.	
Additionally,	the	case	studies	used	to	evaluate	LCP(w)highlight	
that the cost and energy savings achievable via dynamic right-
sizing	are	significant.	The	case	studies	highlight	 that	 if	a	data	
center	has	PMR	larger	than	3,	a	cost	of	toggling	a	server	of	less	

than	a	few	hours	of	server	costs,	and	less	than	40%	background	
load then the cost savings from dynamic right-sizing can be
conservatively	estimated	at	larger	than	15%.Thus,	even	if	a	data	
center	is	currently	performing	valley	filling,	it	can	still	achieve	
significant	cost	savings	via	dynamic	right-sizing.

IV. Enhanced Adaptive Scoring Job Scheduling Algorithm
(ASJS)
ASJS	aims	to	decrease	job’s	completion	time.	We	consider	not	
only the computing power of each resource in the cloud but so
the transmission power of each cluster in a grid system. The
computing	power	of	 each	 resource	 is	 defined	 as	 the	product	
CPU speed and available CPU percentage and the transmission
power	of	each	cluster	is	defined	as	the	average	bandwidth	between	
different clusters. ASJS uses the status of each resource in the grid
as parameters to initialize the cluster score of each cluster. The
cluster score of each cluster will be adjusted by applying local
update and global update. The system will submit a job to the
most appropriate resource according to the scores.

System Framework

Cluster score
The cluster score is calculated based on the following formula.
CSi = α . ATPi + β . ACPi
where CSi is the cluster score for cluster i, a and b are the weight
value of ATPi and ACPi	 respectively,	 the	sum	of	a	and	b	is	1,	
ATPi and ACPi are the average transmission power and average
computing power of cluster i respectively. ATPi means the average
available bandwidth the cluster i can supply to the job and is
defined	as:

where	Bandwidth_availablei,j is the available bandwidth between
cluster i and cluster j, m is the number of clusters in the entire
grid system.
Similarly, ACPi means the average available CPU power cluster
i	can	supply	to	the	job	and	is	defined	as:

Where	CPU_speedk is the CPU speed of resource k in cluster
i, loadk is the current load of the resource k in cluster i, n is the
number of resources in cluster i. Also let

CPk indicates the available computing power of resource.

International Journal of Advanced Research
in Eduation & Technology (IJARET)

138

Vol. 2, Issue 3 (July - Sept. 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

V. Experimental Results

Results and Discussion
The	 table	 1.1	describes	 the	 resources	 allocation	 for	K-Mean	
clustering and EASJS algorithm. The table contains number of
resources	allocation	for	K-Mean	and	EASJS	Algorithm.	

Performances Analysis K-Mean &
EASJS

0
20
40
60
80

100
120

1 3 5 7 9 11

Number of Resources

A
VG

 [%
] K-Mean Clustering

[n]
EASJS [n]

Fig	1.2	:	Performances	Analysis-	Resources	Allocation

Table	1.1	Performances	Analysis-	Resources	Allocation
S.
No

Number	of	
Resource	[n]

K-Mean	
Clustering	[n]

EASJS
[n]

1 30 20 25
2 40 30 35
3 50 40 45
4 60 50 55

5 70 60 65

6 80 70 75

7 90 80 85
8 100 90 95
9 110 100 105
10 120 102 110

The table 1.3 describes the resources allocation time complexity
for	K-Mean	clustering	and	EASJS	algorithm	per	seconds.		The	
figure	contains	number	of	resources	allocation	time	details	for		
K-Mean	and	EASJS	algorithm.

Fig	1.3	:	Performances	Analysis-	Resources	Allocation	Time
S.	No Numb e r 	 o f	

Resource	[n]
K-Mean	Clustering	
[Sec]

EASJS
[Sec]

1 100 122 118
2 200 143 138
3 300 152 153
4 400 164 156
5 500 173 166
6 600 155 146
7 700 146 142
8 800 172 171
9 900 143 142
10 1000 167 163

Performances Analysis- Resources Allocation
Time

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

No.of.Resources [n]

A
V

G
 T

im
e

[S
ec

]

K-Mean Clustering [Sec]
EASJS [Sec]

Fig	1.4	:	Performances	Analysis-	Resources	Allocation	Time	

FINDINGS
The	following	result	finding	for	our	experimental	works,	 they	
are:

It	is	found	that	the	cluster	selection	is	efficient	if	the	job	is	•	
split into sub tasks.
Resources are effectively utilized and waiting time is less in •	
scheduling next successive job in queue.
Resources with limited values are also having the chance for •	
job allocation if the job is split into sub tasks.
Instead of calculating the right cluster after each job •	
completion, the proposed system calculates the clusters
availability at regular intervals so that any new job can be
assigned even during the execution of current job.
Overall	efficiency	of	the	grid	is	more	compared	to	existing	•	
system.
Better	suitable	for	jobs	which	can	be	split	based	on	RAM,	•	
CPU speed and storage location.
The experimental results show that EASJSA is capable of •	
decreasing completion time of jobs and the performance of
EASJS is better than other methods.
Inter dependant jobs are not combined in the proposed system •	
which may be future work.
Studying and improving EASJSA for such kinds of jobs may •	
be carried out in the future.

VI. Conclusion and Future Works
This work proposes an adaptive scoring method to schedule jobs
in	grid	environment.	EASJS	selects	the	fittest	resource	to	execute	
a job according to the status of resources. Local and global update
rules are applied to get the newest status of each resource. Local
update rule updates the status of the resource and cluster which
are selected to execute the job after assigning the job and the Job
Scheduler uses the newest information to assign the next job.
Global update rule updates the status of each resource and cluster
after a job is completed by a resource. It supplies the Job Scheduler
the newest information of all resources and clusters such that the
Job	Scheduler	can	select	the	fittest	resource	for	the	next	job.	The	
experimental results show that EASJS is capable of decreasing
completion time of jobs and the performance of EASJS is better
than other methods.
In the future, EASJS can be applied to real grid applications. This
project	focuses	on	job	scheduling.	The	project	can	be	modified	to	
consider	division	of	file	and	the	replica	strategy	in	data-intensive	
jobs. Jobs are independent in this project, but they may have some
precedence relations in real-life situation. Studying and improving
EASJS for such kinds of jobs may be carried out in the future
using genetic algorithm and game theory.

International Journal of Advanced Research
in Education & Technology (IJARET)

139

Vol. 2, Issue 3 (July - Sept. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

References
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony

D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ion Stoica, Matei Zaharia, A view
of cloud computing, Communications of the ACM 53 (4)
(2010) 50–58.

[2] D. Saha, D. Menasce, S. Porto, Static and dynamic
processor scheduling disciplines in heterogeneous parallel
architectures, Journal of Parallel and Distributed Computing
28 (1) (1995) 1–18.

[3] Sheng-De Wang, I-Tar Hsu, Zheng-Yi Huang, Dynamic
scheduling methods for computational grid environment,
International Conference on Parallel and Distributed
Systems 1 (2005) 22–28.

[4] Syed Nasir Mehmood Shah, Ahmad Kamil Bin Mahmood,
Alan Oxley, Dynamic multilevel hybrid scheduling algorithms
for grid computing, Procedia Computer Science 4 (2011)
402–411.

[5] Grid Scheduling Dictionary Project ; retrieved December
05, 2010; from http://www.mcs.anl.gov/~schopf/ggf-sched/
GGF5/sched-Dict.1.pdf

[6] D. Fernandez-Baca, Allocating modules to processors in a
distributed system, IEEE Trans, Software Eng., 1989

[7]. S. N. M. Shah, A. K. B. Mahmood and A. Oxley, Development
and Performance Analysis of Grid Scheduling Algorithms,
Communications in Computer and Information Science,
Springer, vol. 55, pp. 170–181, 2009.

[8]. S. Haines, Pro Java EE 5 Performance Management
and Scalability; retrieved July 07, 2010;from http://
www.theserverside.com/news/1364275/Pro-Java-EE-5-
Performance-Management-and-Scalability.

[9]. H. Li and R. Buyya, Model-Driven Simulation of Grid
Scheduling Strategies, Third IEEE International Conference
on e-Science a Grid Computing, 2007.

[10] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R. Freund,
Dynamic matching and scheduling of a class of independent
tasks onto heterogeneous computing system, Journal of
Parallel and Distributed Computing 59 (1999) 107–131.

