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I. Introduction
The obtainability of big datasets and growing significance of 
data analysis for logical detection and findings is making a new 
level of high-end applications [26]. Many devices [1] consist of 
applications that execute extensive computations on huge datasets. 
This segment of tools comprises scientific data  and data mining 
examination. Explore new data mining processes for data analysis 
in scientific area has been a lively subject for many years. With 
large dataset dimensions, require for collaborating result from 
performance tools, and latest tendencies in computer science, we 
consider as this domain is going through a serious issue in aspect 
of attaining suitable execution times. From the previous years, 
it is quite impossible to increase the performance of system or 
processor by simply developing clock frequencies.
During the last one decade, many data mining methods have 
been developed to identify patterns, grouping, and clusters from 
various types of data [2]. Until various approaches emphasis on the 
effectiveness of mining, and other methods focus at performance 
enhancement. Developing distributed hierarchies has become a 
workable way to improve data mining performance [3].
Therefore, multi-core architectures and methods like GPUs 
(Graphics Processing Units) and FPGAs(Field Programmable 
Gate Arrays) come to be a cost effective source for better 
performance. Present GPUs provide an admirable performance to 
cost ratio for high-end applications. Moreover, the GPU computing 
programmability  and competences remain to develop quickly. 
The most meaningful development has been the making of the 
CUDA (Compute Unified Device Architecture) by a company, 
NVIDIA. CUDA permits GPU software development with C 
language-similar structures, thus enabling the expansion of non-
graphics applications on a GPU. In recent times, OpenCL is an 
API which appears to be developing as an cross-vendor and open 
level for developing computation supremacy of both GPUs and 
CPUs. Even former to these advances, there had been an increasing 
importance in the usage of GPUs for non-graphics applications 
[4, 5, 6, 25], as also acknowledged in the GPGPU (General 
Purpose computing with GPUs). There are many causes why it 
is required to make use of GPU computing efficiency for data 
mining applications. Consumers/users with a personal computer 
typically have a great GPU to help their graphics applications. 
These users can speed up their data mining executions with this 
GPU. In other circumstances, a classified group can be accessible 
for assisting high-end data executions, these groups or clusters 

require to have visualization proficiencies, that indicates that every 
point has a dominant graphics card [25]. Though, CUDA are speed 
up the utilization of GPUs for common purpose applications, 
various issues still persist in implementation of the GPUs [25]. 
CUDA include open parallel encoding, and plain supervision of its 
composite memory hierarchy. Furthermore, assigning data drive, 
device memory between device memory and CPU, data passing 
among memory hierarchies, and properties of thread network 
structures is clear [25]. This indicates a meaningful learning curve 
for developers who wish to increase the computation of their 
applications using the GPUs. Thus, it will obviously require to 
be capable to concept GPUs using a powerful and remarkable 
interface. In addition, as we consider in this work, application 
computation on GPUs can be enhanced through approaches which 
are not very apparent or instinctive. These kind of optimizations 
may be simply and spontaneously achieved using a programmed 
code generation system [25].
To completely recognize the efficiency of general purpose 
computation on graphics processing units (GPGPU), two important 
subjects require to be considered wisely:

How to concurrent a process into parallel work objects and 1.	
distribute the loads
How to utilize the memory in effective manner, specified its 2.	
leading impact on throughput. 

As these two problems commonly tied together and verdict an 
optimum trade-off between various stages of concurrency and 
memory optimizations needs complete considerate of GPU 
hardware, developing high computing GPGPU curriculum’s 
leftovers problem for application programmers. Additionally, 
GPU hardware models are developing swiftly, which marks the 
code advanced and set for one group like  NVIDIA GTX 8800 
and less optimum for the next version like NVIDIA GTX280 
[27]. Our proposed explanation to these issues is to make program 
developers discover data-level parallelism  and/or fine-grain 
thread-level parallelism and to usage of an enhancing technique 
to accomplish concurrent optimizations  and memory [27]. This 
method, we influence an algorithm-level proficiency of program 
designers and at the same time release them of small-level 
hardware-limited performance optimizations [27]. 

II. Related work
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1. GPGPU
The GPU is an essential constituent in product and service 
technologies. It was formerly developed to be a co-processor to the 
CPU for graphical application and games .In recent times, the GPU 
has been used as a hardware accelerator for several non-graphics 
applications, like scientific analysis, matrix computation [7], 
datasets [8], and distributed analytical tasks. There are primarily 
two types of GPU programming languages: DirectX and OpenGL 
as graphics APIs, and GPGPU languages: CUDA, OpenCL and 
CTM. CUDA is from NVIDIA. Hence CUDA supports well 
NVIDIA CARD. OpenCL is being managed by Khronos group. 
OpenCL is architecture independent language.
The previous type procedures the textures over the programmable 
hardware pipe, as presented in Fig. 1. Vertices and pixel processors 
are labouring to move the computation. So, program design with 
the graphs APIs can directly use the hardware properties associated 
to translation and visualization. Formerly, GPGPU designers used 
graphs APIs to map applications to the graphics interpretation 
machine [9]. Though, this type of mapping may be incompetent 
and infeasible occasionally [10].

Fig.1 : The hardware Pipeline

In disparity, GPGPU programming system the GPU as a many core 
architecture presented in Fig.2,offer C/C++ similar features and 
interferences, and interpretation hardware properties for general 
purpose computation. For ex, CUDA revelations hardware features 
comprising the quick inter processor communication through the 
local memory, as well as the massive thread concurrency. The GPU 
has a huge quantity of device memory, which has large bandwidth 
and max access potential. Primitives as the construct blocks for 
higher-end applications have been projected and designed [8]. 
These primitives based on GPU further decrease the difficulty of 
GPU programming. 

Fig. 2 : The many-core Architecture

2. Distributed Mining
The Parallel data mining is broadly deliberated in distributed 
database [12]. El-Hajj et al. [12] intended a distributed 	
apriori algorithm on varied computer groups and network 
atmospheres using dynamic computation load supervision to 
handle memory restraint, attain balanced loads, and minimize 
computational cost and communication overhead. El-Hajj [12] 
offered alternates of FP Growth on computer clusters, minimum 
computational overhead and boost I/O use, memory, and cache. Li 
et al. [11] validated a linear speed-up of the FP-Growth procedure 
more than thousands of distributed systems using MapReduce 
technique Google.
Since multi-core CPUs and simultaneous multithreading (SMT) 
have developed as the main-stream processing unit, examiners 
have considered illustrative mining procedures, like Apriority[14] 
and k-means [15] on multi-core CPUs. The main concern is in 
what way completely used the thread-level parallelism (TLP) 
and instruction-level parallelism (ILP) on the multi-core CPU. 
In paper [16], enhanced FP Growth [17] via a cache-cognizant 
prefix tree for a tiling strategy for temporal locality  and dimension 
vicinity and ILP. Liu et al. suggested a cache-cognizant FP array 
from compressing lock-free  and FP-tree database tree structure 
algorithm for TLP. Ye et al. discovered parallelizing Bodon’s tree-
based Apriori algorithm with a dataset partitioning technique.

III. Operating System Issues and Challenges
In this segment, we study challenges for GPU resource management 
in operating systems. The below conversation is based on previous 
research work, and does not conclude the full range of GPU 
resource management.

1. GPU Scheduling
GPU setting up is possibly the main significant issue to influence 
the GPU in multi-threading atmospheres. Short of GPU arranging, 
GPU kernel process is released in FIFO (first-in-first-out) manner, 
Though the GPU command trigger element carries GPU command 
sets at their coming direction. Therefore, GPU processing come 
to be a non-pre-emptive process in a strong touch.

2. GPU Clustering
Additional research issues contain care for grouped various GPUs. 
It is a fundamental tool to utilize GPUs by High Performance 
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Computing (HPC) applications. Presently, this emerging concept 
designed on GPU scheduling structures  and GPU resource 
management model to offer high-level sustenance for GPU-
based communicating data cores, super-power computer, and 
cyber-physical machines. GPU clusters are usually hierarchical 
in structure. Each element is self-possessed of a slight amount 
of GPUs grouped on a panel. Various such elements are further 
grouped as a structure.

3. GPU Virtualization
GPU Virtualization is a valuable method broadly accepted in various 
application fields to segregate users in the structure, and mark 
the structure compositional and reliable. Virtualizing data hence 
offers the same assistances for GPU-accelerated systems. GPU 
virtualization provision has been offered by runtime devices [19], 
VMMs [20], and I/O administrators in the works. We howsoever 
consider that there is a problematic area for OS for maintaining 
GPU virtualization. As a matter of fact, virtual machines ultimately 
access the GPU through the device driver in the multitude OS. 
Therefore, at the device driver point, GPU resource management 
shows a dynamic place for GPU virtualization also.

4. Coordination with Runtime Engine
GPU processes are organized by GPU command sets allotted from 
client-space agendas. Such as, GPU kernel introductions and data 
replicas among the host and the device memory are initiated by a 
particular groups of GPU directives. Though, the operating system 
does not identify what kinds of GPU directives are distributed 
from client-space curriculums.

5. Open Source Implementation
Emerging open-source implementation is an important 
responsibility to share thoughts about machines tool and assist 
research. For example, Linux is a famous open-source software 
used in operating systems concept. Some of the open source device 
drivers of GPU are Nouveau and PSCNV, which are used for, for 
NVIDIA’s GPUs accessible with Linux. Earlier research on Time 
Graph mostly used Nouveau to develop and compute an innovative 
real-time GPU command scheduler.

IV. Problem formulation
In contrast with earlier sequential or parallel CPU based FIM 
methods, this paper work is aimed for the GPU with huge 
thread parallelism. Furthermore, we try to recognise the general 
methods on executing data mining procedures on the GPU. The 
GPU manage occurrence calculating on communications in a 
bitmap while the CPU handles the trie hierarchy for outcome 
patterns. Such a development takes benefit of the GPU’s SIMD 
(single instruction multiple data) massive parallelism as well as 
workings well with the GPU’s virtualized centres and hardware-
accomplished threads.
So in this paper  we proposed a framework to provide a concept 
how to distribute a workload and optimize the memory utilization 
on GPGPU with performance analysis parameters. 

V. Data mining based on gpu
As a unified data mining structure, Mining has the resulting 
factors.

1. High-level performance
The data mining processes in GPU mining are integrated and 

developed as concurrent ones manipulating the parallelism of 
the whole system, comprising the co-handling parallelism among 
the CPU and the GPU, and the on-chip parallelism inside every 
processor. In specific, these parallel procedures are accessible to 
numbers of processors on the GPU.

2. I/O control organization
GPU Mining delivers a dynamic and effective I/O control structure 
for exploring huge volumes of data.

3. Operational visualization
Data mining is frequently a high-running and interactive procedure. 
Visualization assistances user to mining huge database more 
proficiently. GPU Mining delivers online visualization for the 
people to note and interrelate with the mining procedure.

The memory management module is accountable for managing 
the data move among the diskette, the key memory and the GPU 
memory. These three points of memories form a memory structure, 
where memory management should be sensibly designed among 
two end-to-end levels. For easiness and efficacy, this constituent 
offer bulk reads and bulk writes only, that means, reading a portion 
of data from the diskette to the GPU memory, and writing a large 
piece of data from the GPU memory to the disk.
In this work, GPU mining uses Berkeley database(Bdb) as the 
backend for storage the data determinedly. Related with the raw I/O 
APIs retrieving data in plain transcript files or structured records, 
Barkley DB clearly delivers the effective buffer controlling among 
the disk and the main memory, composed with suitable file I/O 
processes comprising in-place data modification. Since this 
module of GPU mining maintain bulk reads and writes only, we 
stock amount of data as a file in Bdb with a specific key. Thus, an 
amount of data can be retrieved or kept by the key. GPU mining 
based on the buffer managing from Berkeley DB offers a frivolous 
I/O library containing of two APIs, namely Read Bulk and Write 
Bulk. Read Bulk states a portion of data from the diskette and 
handovers them to the GPU memory, while Write Bulk yields an 
amount of data from the GPU memory to the disk. With these 
two APIs, designers can manage huge datasets short of seeing 
categorical data allocation and data transmission between the 
GPU memory, the main memory and the disk.
The mining module contains of distributed data mining systems 
containing grouping and common item set mining. We select 
GPGPU APIs to design and enhance the mining procedures due 
to their procedural complication. With the substructure delivered 
in the GPU mining, we are adding additional data mining systems 
such as FP-Growth and grouping.
Numbering is an essential process in data mining systems. For 
example, k-means count the various data substances related with 
a particular cluster, and Apriori count the various transactions 
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containing the similar element. We convert this connotation 
counting into counting the number of ones caused from a set 
of Boolean exams on the connotation. Since the connotation is 
commonly a binary relation, example<object, cluster>in k-means 
and <transaction, item>in Apriori.
The k-means algorithm workings in iterations. At the start, the 
procedure arbitrarily selects k of the items as the primary centroid 
for each group. In every iteration, k-means links every data item 
with its adjacent centroid, based on the correspondence metric. 
Now, it figures the different centroids by taking the average of 
all the data items in each group respectively. K-means dismisses 
once the alterations in the centriods are smaller than specific 
threshold. The data transmission among the main memory and 
the GPU memory is minor, when the input data is prepared on 
the GPU memory.
Frequent dataset mining identify groups of objects that look like in 
a percentage of communications, known as support, greater than a 
assumed threshold. The Apriori algorithm discovers all recurrent 
object sets in several moves, known a support threshold. At the 
opening move, it discovers the frequent objects.

VI. Result Analysis
Above approach may be further categorized by two additional 
standards. The primary is the ideal computation rate, which 
is generally the lowest time to implement all of the necessary 
computational work and the secondary is the lowest time to drive 
all data from the DRAM to the centres. The performance metrics 
is shown in table 1.

Table 1 : Performance Metrics 
Name Description Unit
Texc Expected execution time cost
Tcomp Computation cost cost
Tmem Memory cost cost
Toverlap Overlapped cost cost
T’mem Tmem-Toverlap cost
Tfp Ideal Tcomp cost
Tmem_
min

Ideal Tmem cost

Bserial Benefits of eliminating serialization 
effects

benefit

Bfp Benefit of improving computation 
efficiency 

benefit

For the performance of this work, the result of proposed approach 
is compared with existing approach. The results clarify that the 
proposed work helps in minimize the cost and increase the benefits.  
The comparison of mining and GPU base mining on the basis of 
below parameters is depicted in table 2.

Table 2 : Performance Analysis
Parameters Mining GPU based mining
Texc High Low
Tcomp High Low

Tmem High Low and for high computation it may 
be high which are quite complex for 
normal computation (CPU)

Toverlap High Low
Bserial Low High
Bfp Low High

VII. Conclusion
In this paper, we examine terminology of GPGPU  and GPU 
with its features and requirements. In this work we also conclude 
the common issues and challenges of operating system for GPU 
management. The discussed framework of GPGPU provide a 
better memory utilization with minimum computational overhead 
though the proposed data mining technique on GPGPU. 
The proposed work can be further elongated to different data 
mining technique and analyse the GPGPU compiler to make an 
effective translation system for GPGPU applications.
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