
International Journal of Advanced Research
in Education & Technology (IJARET)

114

Vol. 3, Issue 1 (Jan. - Mar. 2016)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

GPGPU For Memory Optimization in Distributed Data Mining
IMd Shabbir Hassan, IIUmesh Chandra

IPh.D Scholar, Dept. of Computer Science, Sri Venkateshwara University, Meerut, UP, India
IIAssistant Professor, Dept. of Computer Science, Sri Venkateshwara University, Meerut, UP, India

I. Introduction
The obtainability of big datasets and growing significance of
data analysis for logical detection and findings is making a new
level of high-end applications [26]. Many devices [1] consist of
applications that execute extensive computations on huge datasets.
This segment of tools comprises scientific data and data mining
examination. Explore new data mining processes for data analysis
in scientific area has been a lively subject for many years. With
large dataset dimensions, require for collaborating result from
performance tools, and latest tendencies in computer science, we
consider as this domain is going through a serious issue in aspect
of attaining suitable execution times. From the previous years,
it is quite impossible to increase the performance of system or
processor by simply developing clock frequencies.
During the last one decade, many data mining methods have
been developed to identify patterns, grouping, and clusters from
various types of data [2]. Until various approaches emphasis on the
effectiveness of mining, and other methods focus at performance
enhancement. Developing distributed hierarchies has become a
workable way to improve data mining performance [3].
Therefore, multi-core architectures and methods like GPUs
(Graphics Processing Units) and FPGAs(Field Programmable
Gate Arrays) come to be a cost effective source for better
performance. Present GPUs provide an admirable performance to
cost ratio for high-end applications. Moreover, the GPU computing
programmability and competences remain to develop quickly.
The most meaningful development has been the making of the
CUDA (Compute Unified Device Architecture) by a company,
NVIDIA. CUDA permits GPU software development with C
language-similar structures, thus enabling the expansion of non-
graphics applications on a GPU. In recent times, OpenCL is an
API which appears to be developing as an cross-vendor and open
level for developing computation supremacy of both GPUs and
CPUs. Even former to these advances, there had been an increasing
importance in the usage of GPUs for non-graphics applications
[4, 5, 6, 25], as also acknowledged in the GPGPU (General
Purpose computing with GPUs). There are many causes why it
is required to make use of GPU computing efficiency for data
mining applications. Consumers/users with a personal computer
typically have a great GPU to help their graphics applications.
These users can speed up their data mining executions with this
GPU. In other circumstances, a classified group can be accessible
for assisting high-end data executions, these groups or clusters

require to have visualization proficiencies, that indicates that every
point has a dominant graphics card [25]. Though, CUDA are speed
up the utilization of GPUs for common purpose applications,
various issues still persist in implementation of the GPUs [25].
CUDA include open parallel encoding, and plain supervision of its
composite memory hierarchy. Furthermore, assigning data drive,
device memory between device memory and CPU, data passing
among memory hierarchies, and properties of thread network
structures is clear [25]. This indicates a meaningful learning curve
for developers who wish to increase the computation of their
applications using the GPUs. Thus, it will obviously require to
be capable to concept GPUs using a powerful and remarkable
interface. In addition, as we consider in this work, application
computation on GPUs can be enhanced through approaches which
are not very apparent or instinctive. These kind of optimizations
may be simply and spontaneously achieved using a programmed
code generation system [25].
To completely recognize the efficiency of general purpose
computation on graphics processing units (GPGPU), two important
subjects require to be considered wisely:

How to concurrent a process into parallel work objects and 1.	
distribute the loads
How to utilize the memory in effective manner, specified its 2.	
leading impact on throughput.

As these two problems commonly tied together and verdict an
optimum trade-off between various stages of concurrency and
memory optimizations needs complete considerate of GPU
hardware, developing high computing GPGPU curriculum’s
leftovers problem for application programmers. Additionally,
GPU hardware models are developing swiftly, which marks the
code advanced and set for one group like NVIDIA GTX 8800
and less optimum for the next version like NVIDIA GTX280
[27]. Our proposed explanation to these issues is to make program
developers discover data-level parallelism and/or fine-grain
thread-level parallelism and to usage of an enhancing technique
to accomplish concurrent optimizations and memory [27]. This
method, we influence an algorithm-level proficiency of program
designers and at the same time release them of small-level
hardware-limited performance optimizations [27].

II. Related work

Abstract
The accessibility of huge datasets and rising significance of data analysis for systematic finding and innovations is generating new
session of high end applications. Modern GPUs computing much these applications at very modest cost. The max computational
supremacy and capability of state-of-art graphics processing units have prepared them the primary extensively manageable parallel
processors with teraflops competence. To completely recognize the efficiency of general purpose computation on graphics processing
units (GPGPU), two important subjects require to be considered which are how to concurrent a process into parallel work objects
and distribute the loads; and how to utilize the memory in effective manner, specified its leading impact on throughput. In this paper
we discuss the framework of GPGPU in data mining with its performance analysis for memory optimization.

Keywords
GPGPU; CUDA; Optimization; Performance; Mining.

International Journal of Advanced Research
in Education & Technology (IJARET)

115

Vol. 3, Issue 1 (Jan. - Mar. 2016)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

1. GPGPU
The GPU is an essential constituent in product and service
technologies. It was formerly developed to be a co-processor to the
CPU for graphical application and games .In recent times, the GPU
has been used as a hardware accelerator for several non-graphics
applications, like scientific analysis, matrix computation [7],
datasets [8], and distributed analytical tasks. There are primarily
two types of GPU programming languages: DirectX and OpenGL
as graphics APIs, and GPGPU languages: CUDA, OpenCL and
CTM. CUDA is from NVIDIA. Hence CUDA supports well
NVIDIA CARD. OpenCL is being managed by Khronos group.
OpenCL is architecture independent language.
The previous type procedures the textures over the programmable
hardware pipe, as presented in Fig. 1. Vertices and pixel processors
are labouring to move the computation. So, program design with
the graphs APIs can directly use the hardware properties associated
to translation and visualization. Formerly, GPGPU designers used
graphs APIs to map applications to the graphics interpretation
machine [9]. Though, this type of mapping may be incompetent
and infeasible occasionally [10].

Fig.1 : The hardware Pipeline

In disparity, GPGPU programming system the GPU as a many core
architecture presented in Fig.2,offer C/C++ similar features and
interferences, and interpretation hardware properties for general
purpose computation. For ex, CUDA revelations hardware features
comprising the quick inter processor communication through the
local memory, as well as the massive thread concurrency. The GPU
has a huge quantity of device memory, which has large bandwidth
and max access potential. Primitives as the construct blocks for
higher-end applications have been projected and designed [8].
These primitives based on GPU further decrease the difficulty of
GPU programming.

Fig. 2 : The many-core Architecture

2. Distributed Mining
The Parallel data mining is broadly deliberated in distributed
database [12]. El-Hajj et al. [12] intended a distributed 	
apriori algorithm on varied computer groups and network
atmospheres using dynamic computation load supervision to
handle memory restraint, attain balanced loads, and minimize
computational cost and communication overhead. El-Hajj [12]
offered alternates of FP Growth on computer clusters, minimum
computational overhead and boost I/O use, memory, and cache. Li
et al. [11] validated a linear speed-up of the FP-Growth procedure
more than thousands of distributed systems using MapReduce
technique Google.
Since multi-core CPUs and simultaneous multithreading (SMT)
have developed as the main-stream processing unit, examiners
have considered illustrative mining procedures, like Apriority[14]
and k-means [15] on multi-core CPUs. The main concern is in
what way completely used the thread-level parallelism (TLP)
and instruction-level parallelism (ILP) on the multi-core CPU.
In paper [16], enhanced FP Growth [17] via a cache-cognizant
prefix tree for a tiling strategy for temporal locality and dimension
vicinity and ILP. Liu et al. suggested a cache-cognizant FP array
from compressing lock-free and FP-tree database tree structure
algorithm for TLP. Ye et al. discovered parallelizing Bodon’s tree-
based Apriori algorithm with a dataset partitioning technique.

III. Operating System Issues and Challenges
In this segment, we study challenges for GPU resource management
in operating systems. The below conversation is based on previous
research work, and does not conclude the full range of GPU
resource management.

1. GPU Scheduling
GPU setting up is possibly the main significant issue to influence
the GPU in multi-threading atmospheres. Short of GPU arranging,
GPU kernel process is released in FIFO (first-in-first-out) manner,
Though the GPU command trigger element carries GPU command
sets at their coming direction. Therefore, GPU processing come
to be a non-pre-emptive process in a strong touch.

2. GPU Clustering
Additional research issues contain care for grouped various GPUs.
It is a fundamental tool to utilize GPUs by High Performance

International Journal of Advanced Research
in Education & Technology (IJARET)

116

Vol. 3, Issue 1 (Jan. - Mar. 2016)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

Computing (HPC) applications. Presently, this emerging concept
designed on GPU scheduling structures and GPU resource
management model to offer high-level sustenance for GPU-
based communicating data cores, super-power computer, and
cyber-physical machines. GPU clusters are usually hierarchical
in structure. Each element is self-possessed of a slight amount
of GPUs grouped on a panel. Various such elements are further
grouped as a structure.

3. GPU Virtualization
GPU Virtualization is a valuable method broadly accepted in various
application fields to segregate users in the structure, and mark
the structure compositional and reliable. Virtualizing data hence
offers the same assistances for GPU-accelerated systems. GPU
virtualization provision has been offered by runtime devices [19],
VMMs [20], and I/O administrators in the works. We howsoever
consider that there is a problematic area for OS for maintaining
GPU virtualization. As a matter of fact, virtual machines ultimately
access the GPU through the device driver in the multitude OS.
Therefore, at the device driver point, GPU resource management
shows a dynamic place for GPU virtualization also.

4. Coordination with Runtime Engine
GPU processes are organized by GPU command sets allotted from
client-space agendas. Such as, GPU kernel introductions and data
replicas among the host and the device memory are initiated by a
particular groups of GPU directives. Though, the operating system
does not identify what kinds of GPU directives are distributed
from client-space curriculums.

5. Open Source Implementation
Emerging open-source implementation is an important
responsibility to share thoughts about machines tool and assist
research. For example, Linux is a famous open-source software
used in operating systems concept. Some of the open source device
drivers of GPU are Nouveau and PSCNV, which are used for, for
NVIDIA’s GPUs accessible with Linux. Earlier research on Time
Graph mostly used Nouveau to develop and compute an innovative
real-time GPU command scheduler.

IV. Problem formulation
In contrast with earlier sequential or parallel CPU based FIM
methods, this paper work is aimed for the GPU with huge
thread parallelism. Furthermore, we try to recognise the general
methods on executing data mining procedures on the GPU. The
GPU manage occurrence calculating on communications in a
bitmap while the CPU handles the trie hierarchy for outcome
patterns. Such a development takes benefit of the GPU’s SIMD
(single instruction multiple data) massive parallelism as well as
workings well with the GPU’s virtualized centres and hardware-
accomplished threads.
So in this paper we proposed a framework to provide a concept
how to distribute a workload and optimize the memory utilization
on GPGPU with performance analysis parameters.

V. Data mining based on gpu
As a unified data mining structure, Mining has the resulting
factors.

1. High-level performance
The data mining processes in GPU mining are integrated and

developed as concurrent ones manipulating the parallelism of
the whole system, comprising the co-handling parallelism among
the CPU and the GPU, and the on-chip parallelism inside every
processor. In specific, these parallel procedures are accessible to
numbers of processors on the GPU.

2. I/O control organization
GPU Mining delivers a dynamic and effective I/O control structure
for exploring huge volumes of data.

3. Operational visualization
Data mining is frequently a high-running and interactive procedure.
Visualization assistances user to mining huge database more
proficiently. GPU Mining delivers online visualization for the
people to note and interrelate with the mining procedure.

The memory management module is accountable for managing
the data move among the diskette, the key memory and the GPU
memory. These three points of memories form a memory structure,
where memory management should be sensibly designed among
two end-to-end levels. For easiness and efficacy, this constituent
offer bulk reads and bulk writes only, that means, reading a portion
of data from the diskette to the GPU memory, and writing a large
piece of data from the GPU memory to the disk.
In this work, GPU mining uses Berkeley database(Bdb) as the
backend for storage the data determinedly. Related with the raw I/O
APIs retrieving data in plain transcript files or structured records,
Barkley DB clearly delivers the effective buffer controlling among
the disk and the main memory, composed with suitable file I/O
processes comprising in-place data modification. Since this
module of GPU mining maintain bulk reads and writes only, we
stock amount of data as a file in Bdb with a specific key. Thus, an
amount of data can be retrieved or kept by the key. GPU mining
based on the buffer managing from Berkeley DB offers a frivolous
I/O library containing of two APIs, namely Read Bulk and Write
Bulk. Read Bulk states a portion of data from the diskette and
handovers them to the GPU memory, while Write Bulk yields an
amount of data from the GPU memory to the disk. With these
two APIs, designers can manage huge datasets short of seeing
categorical data allocation and data transmission between the
GPU memory, the main memory and the disk.
The mining module contains of distributed data mining systems
containing grouping and common item set mining. We select
GPGPU APIs to design and enhance the mining procedures due
to their procedural complication. With the substructure delivered
in the GPU mining, we are adding additional data mining systems
such as FP-Growth and grouping.
Numbering is an essential process in data mining systems. For
example, k-means count the various data substances related with
a particular cluster, and Apriori count the various transactions

International Journal of Advanced Research
in Education & Technology (IJARET)

117

Vol. 3, Issue 1 (Jan. - Mar. 2016)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

containing the similar element. We convert this connotation
counting into counting the number of ones caused from a set
of Boolean exams on the connotation. Since the connotation is
commonly a binary relation, example<object, cluster>in k-means
and <transaction, item>in Apriori.
The k-means algorithm workings in iterations. At the start, the
procedure arbitrarily selects k of the items as the primary centroid
for each group. In every iteration, k-means links every data item
with its adjacent centroid, based on the correspondence metric.
Now, it figures the different centroids by taking the average of
all the data items in each group respectively. K-means dismisses
once the alterations in the centriods are smaller than specific
threshold. The data transmission among the main memory and
the GPU memory is minor, when the input data is prepared on
the GPU memory.
Frequent dataset mining identify groups of objects that look like in
a percentage of communications, known as support, greater than a
assumed threshold. The Apriori algorithm discovers all recurrent
object sets in several moves, known a support threshold. At the
opening move, it discovers the frequent objects.

VI. Result Analysis
Above approach may be further categorized by two additional
standards. The primary is the ideal computation rate, which
is generally the lowest time to implement all of the necessary
computational work and the secondary is the lowest time to drive
all data from the DRAM to the centres. The performance metrics
is shown in table 1.

Table 1 : Performance Metrics
Name Description Unit
Texc Expected execution time cost
Tcomp Computation cost cost
Tmem Memory cost cost
Toverlap Overlapped cost cost
T’mem Tmem-Toverlap cost
Tfp Ideal Tcomp cost
Tmem_
min

Ideal Tmem cost

Bserial Benefits of eliminating serialization
effects

benefit

Bfp Benefit of improving computation
efficiency

benefit

For the performance of this work, the result of proposed approach
is compared with existing approach. The results clarify that the
proposed work helps in minimize the cost and increase the benefits.
The comparison of mining and GPU base mining on the basis of
below parameters is depicted in table 2.

Table 2 : Performance Analysis
Parameters Mining GPU based mining
Texc High Low
Tcomp High Low

Tmem High Low and for high computation it may
be high which are quite complex for
normal computation (CPU)

Toverlap High Low
Bserial Low High
Bfp Low High

VII. Conclusion
In this paper, we examine terminology of GPGPU and GPU
with its features and requirements. In this work we also conclude
the common issues and challenges of operating system for GPU
management. The discussed framework of GPGPU provide a
better memory utilization with minimum computational overhead
though the proposed data mining technique on GPGPU.
The proposed work can be further elongated to different data
mining technique and analyse the GPGPU compiler to make an
effective translation system for GPGPU applications.

References
[1]	 E. Randal, and Bryant, “Data-Intensive Supercomputing:

The Case for DISC,” Technical Report CMU-CS-07-128,
School of Computer Science, Carnegie Mellon University,
2007.

[2]	 J. Han and M. Kamber. “Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2001.

[3]	 M. J. Zaki, “Data mining parallel and distributed association
mining: A survey,” IEEE Concurrency, 2010.

[4]	 I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for GPUs: Stream
Computing on Graphics Hardware,” 2004.

[5]	 M. Charalambous, P. Trancoso, and A. Stamatakis, “Initial
experiences porting a bioinformatics application to a graphics
processor,” In Panhellenic Conference on Informatics, 2005,
pp.415-425.

[6]	 M. Christen, O. Schenk, and H. Burkhart, “General-Purpose
Sparse Matrix Building Blocks using the NVIDIA CUDA
Technology Platform,” In First Workshop on General
Purpose Processing on Graphics Processing Units, Oct
2007.

[7]	 Y. Yang, P. Xiang, J. Kong and H. ZHOU, “A GPGPU compiler
for memory optimization and parallelism management,”
PLDI, ACM, June 2010.

[8]	 N. Govindaraju, J.Gray, R. Kumar, and D. Manocha,
“GPUTeraSort: High performance graphics co-processor
sorting for large database management,” In SIGMOD,
2006.

[9]	 E. Larsen and D. McAllister, “Fast matrix multiplies using
graphics hardware,” 2011.

[10]	J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Kruger, A. E. Lefohn, and T. J. Purcell, “A survey of general-
purpose computation on graphics hardware,” 2007.

[11]	 H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Chang, “PFP:
Parallel FP-Growth for Query Recommendation. ACM
Recommender Systems,” 2008.

[12]	M. El-Hajj and O. Zaiane, “Parallel Leap: Large-Scale
Maximal Pattern Mining in a Distributed Environment,”
In ICPADS, 2006.

[13]	S. Hong and H. Kim, “An analytical model for GPU
architecture with memory-level and thread-level parallelism
awareness,” In Proc. International Symposium on Computer

International Journal of Advanced Research
in Education & Technology (IJARET)

118

Vol. 3, Issue 1 (Jan. - Mar. 2016)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

Architecture, 2009.
[14]	R. Agrawal and R. Srikant. “Fast algorithms for mining

association rules,” In VLDB, volume 1215, 1994.
[15]	M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J.

Ramanujam, A. Rountev, and P. Sadayappan, “Automatic
Data Movement and Computation Mapping for Multi-level
Parallel Architectures with Explicitly Managed Memories,”
In Proc. ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2008.

[16]	A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen,
Y. Chen, and P. Dubey, “Cache conscious frequent pattern
mining on a modern processor,” In VLDB, 2005.

[17]	J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” In SIGMOD, 2000

[18]	H.A. Lagar-Cavilla, N. Tolia, M.Satyanarayanan, and E.
de Lara, “VMM-Independent Graphics Acceleratio,” In
Proceedings of the ACM/Usenix International Conference
on Virtual Execution Environments, 2007, pp.33-43.

[19]	V. Gupta, A. Gavrilovska, N. Tolia, and V. Talwar, “GViM:
GPU accelerated Virtual Machines,” In Proceedings of the
ACM Workshop on System-level Virtualization for High
Performance Computing, 2011, pp.17-24.

[20]	S. Kato and Y. Ishikawa, “Gang EDF Scheduling of Parallel
Task Systems,” In Proceedings of the IEEE Real-Time
Systems Symposium, 2009, pp.459-468.

[21]	S. Kato, Y. Ishikawa, and R. Rajkumar, “CPU Scheduling and
Memory Management for Interactive Real-Time Applications,
”Real-Time Systems,2011.

[22]	S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar,
“Resource Sharing in GPU-accelerated Windowing
Systems,” In Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium, 2011,
pp.191-200.

[23]	S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa,
“Time Graph: GPU Scheduling for Real-Time Multi-Tasking
Environments,” In Proceedings of the USENIX Annual
Technical Conference, 2011.

[24]	S. Kato and N. Yamasaki, “Global EDF-based Scheduling
with Efficient Priority Promotion,” In Proceedings of the
IEEE Embedded and Real-Time computing system and
applications, 2008, pp. 197-206.

[25]	Wenjing Ma. "A translation system for enabling data mining
applications on GPUs", Proceedings of the 23rd international
conference on Conference on Supercomputing ICS 09 ICS
09, 2009.

[26]	Leonid Glimcher. "Supporting load balancing for distributed
data-intensive applications", 2009 International Conference
on High Performance Computing (HiPC), 12/2009

[27]	Yang, Yi, Ping Xiang, Jingfei Kong, and Huiyang Zhou. "A
GPGPU compiler for memory optimization and parallelism
management", ACM SIGPLAN Notices, 2010.

